home *** CD-ROM | disk | FTP | other *** search
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC Supplement to TheRef(tm) Drive & Controller Listing │▒
- ├────────────────────────────────────────────────────────────────────┤▒
- │ In "publishing" TheRef(tm), I've often been asked the difference │▒
- │ between the types of drive controllers and recording methods. I'm │▒
- │ not going to get into that in this document, as it would require a │▒
- │ good sized doc. of it's own. What I have supplied are diagrams of │▒
- │ the different connectors associated with the technology today. │▒
- │ frf │▒
- ├────────────────────────────┤ CABLES ├──────────────────────────────┤▒
- │ │▒
- │ Controller Drive 2(or none) Drive 1 │▒
- │ │▒
- │ 1╔══╗ ─────────1╔══╗ ────stripe─────1╔══╗ Pins 10-16 │▒
- │ FLOPPY cable ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ are twisted │▒
- │ with twist ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡XX≡≡║├┤║ before the │▒
- │ (control & ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ connector. │▒
- │ data, 34 pin) ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ (7 wires) │▒
- │ ╚══╝ ╚══╝ ╚══╝ │▒
- │ 1╔══╗ ─────────1╔══╗ ────stripe─────1╔══╗ Pins 25-29 │▒
- │ ST412 & ESDI ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ are twisted │▒
- │ Hard Drive ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ before the │▒
- │ cable w/twist ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡XX≡≡║├┤║ connector. │▒
- │ (control) ║::║≡≡≡≡≡≡≡≡≡≡≡║├┤║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ (5 wires) │▒
- │ ╚══╝ ╚══╝ ╚══╝ │▒
- │ 1╔══╗ ───────────stripe─────────────1╔══╗ (no twists) │▒
- │ ST412 & ESDI ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ Each drive │▒
- │ Hard Drive ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ has it's │▒
- │ (data, 20 pin)║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║├┤║ own data │▒
- │ ╚══╝ ╚══╝ cable │▒
- │ │▒
- │ IMPORTANT NOTE: Pin #1 on any drive cable SHOULD be indicated by a │▒
- │ a colored stripe. If you should find the stripe │▒
- │ by connector pin 34 (or 20), inspect the whole │▒
- │ cable VERY throughly! │▒
- │ │▒
- │ DRIVE SELECT For both Floppy and Hard drives, when the 34 pin │▒
- │ JUMPERS: cable has a twist, the device number should be set │▒
- │ to the second position. Drives numbered 0-3, set to │▒
- │ 1, those numbered 1-4, set to 2. When cables with- │▒
- │ out a twist are used, Floppy "A", and(or) Hard drive │▒
- │ "C" should be set to 1, and the second Floppy and │▒
- │ (or) Hard drive should be set to 2. │▒
- │ │▒
- │ TERMINATORS: When using more than one drive on a cable (ie; 2FDs │▒
- │ or 2HDs), the terminating resistor pack should be │▒
- │ left on the drive furthest from the controller, and │▒
- │ removed from the drive closest to the controller. │▒
- │ │▒
- │ NOTE: On SCSI drives, the Host Adapter also has resistors. │▒
- │ These are needed to terminate both ends of the bus. │▒
- │ Since the SCSI bus can have up to 7 devices attached │▒
- │ to it, only the Host Adapter and the device farthest │▒
- │ from it will retain the resistors. All devices in- │▒
- │ between should have theirs removed. │▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC 2 │▒
- ├──────────────────────────┤ CONNECTIONS ├───────────────────────────┤▒
- │ │▒
- │ FLOPPY DRIVES ┌─────┐ │▒
- │ HI/LO DENSITY >│2 1│ GND │▒
- │ The connector on a floppy drive N/C │4 _ 3│ | │▒
- │ consists of 34 conductors. Both N/C │6 5│ | │▒
- │ control and data use this same INDEX <│8 7│ | │▒
- │ cable. Most cables have a twist MOTOR ENAB. A >│10 9│ | │▒
- │ that interchanges pins 10 through DRIVE SEL. B >│12 11│ | │▒
- │ 16 at the end of the cable (on DRIVE SEL. A >│14 13│ | │▒
- │ drive 1). Most floppy connect- MOTOR ENAB. B >│16 15│ | │▒
- │ ors have a "key" between pins DIRECTION SEL. >│18 17│ | │▒
- │ 4 & 6, and 3 & 5, to prevent the HEAD STEP >│20 19│ | │▒
- │ cable from being reversed. At WRITE DATA >│22 21│ | │▒
- │ the other end, the dual row con- WRITE GATE >│24 23│ | │▒
- │ nector that attaches to the con- TRACK 00 <│26 25│ | │▒
- │ troller card will usually have a WRITE PROTECT <│28 27│ | │▒
- │ set of ridges that coincide with READ DATA <│30 29│ | │▒
- │ cutouts in the controller card's HEAD SELECT >│32 31│ | │▒
- │ connector. Note that old style DISK CHANGE <│34 33│ GND │▒
- │ floppy-only controllers used a └─────┘ │▒
- │ card-edge connector just like that > Input ( At the │▒
- │ of the drive. < Output Drive Conn.) │▒
- │ │▒
- │ ST506/412 HARD DRIVE (MFM & RLL) │▒
- │ │▒
- │ This standard drive system uses ┌─────┐ │▒
- │ two cables; a 34 conductor control HEAD SEL. 8 │2 1│ GND │▒
- │ cable, and a 20 conductor data HEAD SEL. 4 │4 _ 3│ | │▒
- │ cable. The control cable contains WRITE GATE │6 5│ | │▒
- │ a twist of the conductors going to SEEK COMPLETE │8 7│ | │▒
- │ the farthest drive, which is drive TRACK 0 │10 9│ | │▒
- │ "C" on most systems. This twist WRITE FAULT │12 11│ | │▒
- │ consists of conductors 25 through HEAD SEL. 1 │14 13│ | │▒
- │ 29. As with the floppy cable, the RESERVED │16 15│ | │▒
- │ ST506/412 cables normally have a HEAD SEL. 2 │18 17│ | │▒
- │ key to prevent reversal, and the INDEX │20 19│ | │▒
- │ controller end has a pin-type con- READY │22 21│ | │▒
- │ nector, while the drive end has a STEP │24 23│ | │▒
- │ card-edge type connector. DRIVE SEL. 1 │26 25│ | │▒
- │ DRIVE SEL. 2 │28 27│ | │▒
- │ ┌─────┐ DRIVE SEL. 3 │30 29│ | │▒
- │ DRIVE SEL'D │1 2│ GND DRIVE SEL. 4 │32 31│ | │▒
- │ RESERVED │3 _ 4│ | DIRECTION IN │34 33│ GND │▒
- │ | │5 6│ | └─────┘ │▒
- │ | │7 8│ GND │▒
- │ RESERVED │9 10│ RESERVED Though control signals │▒
- │ GND │11 12│ GND go through a single 34 │▒
- │ * WRITE DATA+ │13 14│ * WRITE DATA- conductor cable, data │▒
- │ GND │15 16│ GND flows through seperate │▒
- │ * READ DATA+ │17 18│ * READ DATA- 20 conductor cables │▒
- │ GND │19 20│ GND for each drive (C,D). │▒
- │ *(MFM or RLL) └─────┘ │▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC 3 │▒
- ├──────────────────────────┤ CONNECTIONS ├───────────────────────────┤▒
- │ │▒
- │ ESDI HARD DRIVES ┌─────┐ │▒
- │ HEAD SEL. 3 │2 1│ GND │▒
- │ Though ESDI and ST506/412 drives HEAD SEL. 2 │4 _ 3│ | │▒
- │ share similar looking cables, WRITE GATE │6 5│ | │▒
- │ even to the point of having a CONFIG/STAT DATA │8 7│ | │▒
- │ twist, the actual data and con- TRANSFER ACK. │10 9│ | │▒
- │ trol signals are very different. ATTENTION │12 11│ | │▒
- │ One should never mix components HEAD SEL. 0 │14 13│ | │▒
- │ from these two drive types. SECT/ADD.MK. FOUND │16 15│ | │▒
- │ While the ST506/412 interface HEAD SEL. 1 │18 17│ | │▒
- │ utilizes a standard pulse code INDEX │20 19│ | │▒
- │ to transmit data between the READY │22 21│ | │▒
- │ drive and controller, ESDI uses TRANS.REQUEST │24 23│ | │▒
- │ a pulse code that does not require DRIVE SEL. 1 │26 25│ | │▒
- │ the level to return to zero between DRIVE SEL. 2 │28 27│ | │▒
- │ pulses. This format is refered to DRIVE SEL. 3 │30 29│ | │▒
- │ as NRZ, or Non Return to Zero. By READ GATE │32 31│ | │▒
- │ utilizing NRZ, the clock that data COMMAND DATA │34 33│ GND │▒
- │ is transfered by can be increased, └─────┘ │▒
- │ thereby increasing the troughput to │▒
- │ and from the ESDI disk. │▒
- │ ┌─────┐ │▒
- │ DRIVE SEL'D │1 2│ SECT/ADD.MK. FOUND │▒
- │ SEEK COMPLETE │3 4│ ADDRESS MARK ENABLE │▒
- │ RESV'D FOR STEP MODE │5 6│ GND │▒
- │ WRITE CLOCK+ │7 8│ WRITE CLOCK- │▒
- │ CARTRIDGE CHANGED │9 10│ READ REF. CLOCK+ │▒
- │ READ REF. CLOCK- │11 12│ GND │▒
- │ NRZ WRITE DATA+ │13 14│ NRZ WRITE DATA- │▒
- │ GND │15 16│ GND │▒
- │ NRZ READ DATA+ │17 18│ NRZ READ DATA- │▒
- │ GND │19 20│ GND │▒
- │ └─────┘ │▒
- │ │▒
- │ ───────────────┐ And in this corner... Recording ┌──────────────── │▒
- │ │▒
- │ Times were, you had a simple choice for type of disk drive... │▒
- │ Any kind, as long as it was ST506/412. Those were the heydays of │▒
- │ MFM drives. But many manufacturers weren't content with the 17 │▒
- │ sectors/track that MFM provided. They devised a newer encoding │▒
- │ scheme to pack data tighter, and called it RLL, or Run Length │▒
- │ Limited, as opposed to MFM, or Modified Frequency Modulation. It │▒
- │ involves using groups of 16 bits rather than each individual bit, │▒
- │ thus achieving a sort of "compression" of the information as it is │▒
- │ encoded. Since the same information takes up less space as RLL │▒
- │ encoded data, more info can be writen to the disk. The most com- │▒
- │ mon RLL technique, known as 2,7 RLL, can pack roughly 50% more on │▒
- │ a disk than MFM. Of course, there is always a trade-off, and the │▒
- │ timing and media required for RLL is it. RLL requires a higher │▒
- │ grade of media because of it's dense bit-packing, and timing is │▒
- │ more critical, since the data is flowing at 50% higher rate than │▒
- │ an MFM drive. Also, the mechanics of the drive must have tighter │▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC 4 │▒
- ├────────────────────────────────────────────────────────────────────┤▒
- │ tolerences because head positioning becomes more critical. These │▒
- │ requirements kept RLL drives at a premium. It has only been the │▒
- │ last two years, that RLL drives have outsold MFM, and have all but │▒
- │ wiped them from the marketplace. This turnabout has come from the │▒
- │ need to increase disk capacity more and more. Both ESDI, and SCSI │▒
- │ type drives utilize RLL.(1*) encoding to achieve high capacity and │▒
- │ transfer rates (from the disk). And the newest interface, IDE, or │▒
- │ Integrated Drive Electronics, is also based on this technology. │▒
- │ ───────────────────────────────┐ ┌──────────────────────────────── │▒
- │ ┌─────┐ │▒
- │ SCSI HARD DRIVES DB0 <>│2 1│ GND 5 │▒
- │ DB1 <>│4 3│ | 0 │▒
- │ The normal internal cable for SCSI DB2 <>│6 5│ | │▒
- │ is a 50 conductor ribbon, with all DB3 <>│8 7│ | P │▒
- │ odd numbered conductors grounded. DB4 <>│10 9│ | I │▒
- │ Two conductors, numbers 25 & 26, are DB5 <>│12 11│ | N │▒
- │ often left not-connected, as they DB6 <>│14 13│ | │▒
- │ deal with Terminator power, and can DB7 <>│16 15│ | D │▒
- │ be easily shorted by cable reversals. DBP <>│18 17│ | U │▒
- │ There are no twists in this cable, GND │20 19│ | A │▒
- │ and it's length may be a maximum of GND │22 21│ | L │▒
- │ 6 meters. But one is advised to use GND │24 23│ | │▒
- │ minimum lengths to improve timing. TERM PWR │26 25│ | R │▒
- │ Up to seven drives, or devices may be GND │28 27│ | O │▒
- │ attached to an SCSI cable. Each is GND │30 29│ | W │▒
- │ daisy-chained on the cable, or, when ATN >│32 31│ | │▒
- │ a device has two connectors, another GND │34 33│ | C │▒
- │ cable may be "spliced" into the chain BSY <>│36 35│ | O │▒
- │ starting at the second connector, and ACK >│38 37│ | N │▒
- │ continued on. Care must be taken to RST <>│40 39│ | N │▒
- │ insure that cables and connectors are MSG < │42 41│ | E │▒
- │ not reversed, as this would short pin SEL <>│44 43│ | C │▒
- │ 26 (TERMPWR) to ground, and likely C/D < │46 45│ | T │▒
- │ damage the drive or controller. Also, REQ < │48 47│ | O │▒
- │ as explained earlier, the terminating I/O < │50 49│ GND R │▒
- │ resistors should remain only on the └─────┘ │▒
- │ controller (Host Adapter) and the LAST ┌──┐ DB-25F CONN. │▒
- │ drive on the cable, regardless of it's GND │1 └──┐ │▒
- │ address. DB1 <>│2 14│<> DB0 │▒
- │ Most SCSI Host Adapters also have DB3 <>│3 15│<> DB2 │▒
- │ a connector for external drives in the DB5 <>│4 16│<> DB4 │▒
- │ form of a Centronics(tm) type 50 pin, DB7 <>│5 17│<> DB6 │▒
- │ or an "alternate", DB-25F connector. GND │6 18│<> PARITY │▒
- │ Only the internal 50-pin, and the SEL <>│7 19│ GND │▒
- │ "alternate" external connector are GND │8 20│< ATN │▒
- │ shown here. (see also: MORE SCSI) TMPWR │9 21│ > MSG │▒
- │ Also, these diagrams refer to the RST <>│10 22│< ACK │▒
- │ single-ended SCSI connections, since C/D < │11 23│<> BSY │▒
- │ this is the most common arrangement I/O < │12 24│ > REQ │▒
- │ for PCs today. The Differential SCSI GND │13 25│ GND │▒
- │ requires balanced lines, and is used │ ┌──┘ │▒
- │ mostly on high-end workstations. └──┘ FUTURE DOMAIN│▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC 5 │▒
- ├────────────────────────────┤ CABLES ├──────────────────────────────┤▒
- │ SCSI (cont.) │▒
- │ (T) ┌─(DC)┐ (T) │▒
- │ On an SCSI cable, the 1╔══╗─stripe─1╔══╗──1╔══╗──1╔══╦══╗──1╔══╗ │▒
- │ terminating resistors ║::║≡≡≡≡≡≡≡≡≡║::║≡≡≡║::║≡≡≡║::║::║≡≡≡║::║ │▒
- │ (T) remain at the END ║::║≡≡≡≡≡≡≡≡≡║::║≡≡≡║::║≡≡≡║::║::║≡≡≡║::║ │▒
- │ devices on the cable, ║::║≡≡≡≡≡≡≡≡≡║::║≡≡≡║::║≡≡≡║::║::║≡≡≡║::║ │▒
- │ even when 2 cables are ║::║≡≡≡≡≡≡≡≡≡║::║≡≡≡║::║≡≡≡║::║::║≡≡≡║::║ │▒
- │ "Daisy-Chained" (DC). ║::║≡≡≡≡≡≡≡≡≡║::║≡≡≡║::║≡≡≡║::║::║≡≡≡║::║ │▒
- │ Also, the external ║::║≡≡≡≡≡≡≡≡≡║::║≡≡≡║::║≡≡≡║::║::║≡≡≡║::║ │▒
- │ connector may be used, ╚══╝ ╚══╝ ╚══╝ ╚══╩══╝ ╚══╝ │▒
- │ requiring the removal (HA) Drives 1-7 (in any order) │▒
- │ of the Host Adapter's │▒
- │ internal Term. resistors. │▒
- ├──────────────────────────┤ CONNECTORS ├────────────────────────────┤▒
- │ │▒
- │ IDE (AT) HARD DRIVES (<> AT THE DRIVE CONN) │▒
- │ ┌─────┐ │▒
- │ IDE, or Integrated Drive Electronics RST >│1 2│ GND │▒
- │ is the most recent drive interface to SD7 <>│3 4│<> SD8 │▒
- │ gain popularity. Often, the control SD6 <>│5 6│<> SD9 │▒
- │ circuitry is built into the mother- SD5 <>│7 8│<> SD10 │▒
- │ board, eliminating the requirement for SD4 <>│9 10│<> SD11 │▒
- │ a seperate Host Adapter. There are 2 SD3 <>│11 12│<> SD12 │▒
- │ types of IDE interfaces...those for the SD2 <>│13 14│<> SD13 │▒
- │ 8-bit XT bus, and those for the 16-bit SD1 <>│15 16│<> SD14 │▒
- │ AT bus (detailed here). The cable for SD0 <>│17 18│<> SD15 │▒
- │ IDE contains 40 conductors and has no GND │19 20│N/C (KEY) │▒
- │ twists. Like an SCSI cable, the IDE RES.N/C│21 22│ GND │▒
- │ cable uses a Dual-row Pin connector for IOW >│23 24│ GND │▒
- │ both ends. A single cable may be used IOR >│25 26│ GND │▒
- │ to connect two drives, or two cables RES.N/C│27 28│N/C RES. │▒
- │ may be Daisy-Chained. Most IDE Host RES.N/C│29 30│ GND │▒
- │ Adapters will support two hard drives. IRQ14 <│31 32│> I/O CS16 │▒
- │ The first drive should be jumpered as SA1 <>│33 34│<> PDIAG │▒
- │ the Master drive, and the second as the SA0 <>│35 36│<> SA2 │▒
- │ Slave drive. Plug-in IDE Host Adapters CS0 >│37 38│< CS1 │▒
- │ are often called Paddle-Boards, and ACTIVE <│39 40│ GND │▒
- │ may contain a floppy controller, and └─────┘ │▒
- │ serial and parallel ports. │▒
- │ │▒
- ├────────────────────────────┤ CABLES ├──────────────────────────────┤▒
- │ Note: │▒
- │ 1╔══╗────stripe─────1╔══╗───────────1╔══╗ │▒
- │ The IDE Host Adapter ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║::║≡≡≡≡≡≡≡≡≡≡≡≡║::║ │▒
- │ connector may be on ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║::║≡≡≡≡≡≡≡≡≡≡≡≡║::║ │▒
- │ a plug-in Paddle-Board ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║::║≡≡≡≡≡≡≡≡≡≡≡≡║::║ │▒
- │ or may be integrated ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║::║≡≡≡≡≡≡≡≡≡≡≡≡║::║ │▒
- │ on the Motherboard. ║::║≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡║::║≡≡≡≡≡≡≡≡≡≡≡≡║::║ │▒
- │ ╚══╝ ╚══╝ ╚══╝ │▒
- │ Host Adapter Drives 1-2 (any order) │▒
- ├────────────────────────────────────────────────────────────────────┤▒
- │ 1* There ARE some SCSI drives that utilize MFM, but very few. │▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC 6 │▒
- ├───────────────────────┐ More on Recording ┌────────────────────────┤▒
- │ │▒
- │ WRITE PRECOMPENSATION │▒
- │ │▒
- │ OK, so we've all seen it listed, and maybe even had to set it │▒
- │ in the CMOS. So what IS it? And what does it do? │▒
- │ PreComp. is the way in which the electronics compensates for │▒
- │ eventual "drift" of the magnetic domains written on the disk. A │▒
- │ simple explaination is that it allows the head to space bits that │▒
- │ would attract each other, further apart, while it puts those that │▒
- │ repel each other, closer together. It does this by analyzing the │▒
- │ data stream, and adjusting the timing for each bit, to allow it to │▒
- │ be recorded earlier or later, if needed. │▒
- │ Not all disks require you to set their PreComp value. Those │▒
- │ that do are asking for a cylinder to start PreComp. at. Since the │▒
- │ packing of the bits on a disk increases as you get closer to the │▒
- │ center of the disk (higher cylinders), the requirement for PreComp.│▒
- │ increases too. The PreComp. value specified by the Manufacturer │▒
- │ for a disk is his way of insuring your long term data stability. │▒
- │ │▒
- │ ──< THE EFFECT OF PRECOMPENSATION OVER TIME >── │▒
- │ │▒
- │ When recorded (w/o PreComp) When recorded (with PreComp) │▒
- │ ┌──────────────────────────────┐ ┌──────────────────────────────┐ │▒
- │ │ +- -+ +- +- -+ -+ │ │ +- -+ +- -+ -+ -+│ │▒
- │ └──────────────────────────────┘ └──────────────────────────────┘ │▒
- │ │▒
- │ After time (w/o PreComp) After time (with PreComp) │▒
- │ ┌──────────────────────────────┐ ┌──────────────────────────────┐ │▒
- │ │+- -+ +- +- -+ -+ │ │ +- -+ +- -+ -+ -+ │ │▒
- │ └──────────────────────────────┘ └──────────────────────────────┘ │▒
- │ │▒
- │ From the figures above, we can see how a slight amount of Pre- │▒
- │ Compensation can insure long term stability. The disk that didn't │▒
- │ employ PreComp was eventually unreadable. Of course, this would │▒
- │ take time to happen, but no one can give cold hard specs on how │▒
- │ much drift will occure. (Of course, this example is a gross sim- │▒
- │ plification of the process, but, hey, who's counting?) │▒
- │ │▒
- ├───────────────────────┤ For Notes & Such ├─────────────────────────┤▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- │ │▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-
- ┌────────────────────────────────────────────────────────────────────┐
- │ DIAGRAMS.DOC 7 │▒
- ├────────────────────────────────────────────────────────────────────┤▒
- │ APPLE SCSI │▒
- │ │▒
- │ Unlike in the PC world, the Apple APPLE DB-25 SCSI │▒
- │ standardized on one drive interface, ┌────┐ │▒
- │ SCSI. Also, Apple standardized on REQ < │1 └┐ │▒
- │ a 25 pin connector for external con- MSG < │2 14│ GND │▒
- │ nections. However, Apple decided not I/O < │3 15│ > C/D │▒
- │ to implement the complete ANSI spec., RST <>│4 16│ GND │▒
- │ so one must be careful that peripherals ACK >│5 17│< ATN │▒
- │ used are certified to work with Apple's BSY <>│6 18│ GND │▒
- │ SCSI bus. GND │7 19│<> SEL │▒
- │ Apple also developed it's own pin- DB0 <>│8 20│<> PARITY │▒
- │ configuration. The Apple and Future GND │9 21│<> DB1 │▒
- │ Domain 25-pin SCSI connectors are as DB3 <>│10 22│<> DB2 │▒
- │ close to "Standards" as there are in DB5 <>│11 23│<> DB4 │▒
- │ the world of PCs. But the real ANSI DB6 <>│12 24│ GND │▒
- │ Standard called for a 50 pin connector DB7 <>│13 25│ TMPWR │▒
- │ commonly referred to as a "Centronics" │ ┌┘ │▒
- │ type (made popular by the Centronics └────┘ │▒
- │ printer company). Instead of the 25 │▒
- │ staggered pins of the Apple & Future 50-PIN "CENTRONICS" │▒
- │ Domain type connectors, the Centronics TYPE SCSI │▒
- │ type uses 2 parallel rows of 25 pins. ┌─────┐ │▒
- │ This arrangement allowed use of extra │1 26│ │▒
- │ grounds for better isolation. │2 27│ │▒
- │ │3 28│ │▒
- │ │4 29│ │▒
- │ │5 30│ │▒
- │ │6 31│ │▒
- │ │7 32│ │▒
- │ │8 33│ │▒
- │ (WORK IN PROGRESS) │9 34│ │▒
- │ │10 35│ │▒
- │ │11 36│ │▒
- │ │12 37│ │▒
- │ │13 38│ │▒
- │ │14 39│ │▒
- │ │15 40│ │▒
- │ │16 41│ │▒
- │ │17 42│ │▒
- │ │18 43│ │▒
- │ │19 44│ │▒
- │ │20 45│ │▒
- │ │21 46│ │▒
- │ │22 47│ │▒
- │ │23 48│ │▒
- │ │24 49│ │▒
- │ │25 50│ │▒
- │ └─────┘ │▒
- │ │▒
- │ │▒
- │ THE END? │▒
- └────────────────────────────────────────────────────────────────────┘▒
- ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
-